AGITATION OF A LIQUID IN A STRONG EXTERNAL
ELECTRIC FIELD
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This article considers the condition for instability of the surface waves in a liquid system in
a strong external electric field, As a result of the viscosity, such surface waves lead to vig-
orous volume agitation, accelerating chemical and physicochemical processes occurring in the
system, '

Heterogeneous electric fields have recently come into use for vigorous agitation in industrial physi-
cochemical or chemical processes. Varying heterogeneous electric fields make it possible to create wave-
like motions at the surface of a liquid, which, through internal-friction forces, produce powerful turbulent
flows within the liquid and thus promote good agitation, This permits intensification of many processes
that require agitation, including extraction, emulsion breakdown, synthesis of certain important compounds
(hydrazine, nylon, etc.), and solution of solids in liquids.

If one places a rack of electrodes connected to a quasivarying high voltage source at the surface of
the liquid (homogeneous or multiphase, conductive or nonconductive) and another electrode, immersed in
the liguid, is grounded (Fig. 1), wave-like motions develop at the liquid surface and, under certain con-
ditions, become so intense that they lead to vigorous volume agitation as a result of viscosity. There is
no theory of this process, although practical applications of such an agitation method have been discussed
in a survey [1].

It is therefore of great interest to consider the conditions that must be observed to produce vigorous
liquid agitation under the action of an external electric field and to evaluate the energy consumed, It will
be shown below that vigorous agitation occurs if the distance between the electrodes and the rack is equal
to, or shorter than, the optimum wavelength, since resonance occurs in this case and the amplitude of the
superficial waves is small. These optimum conditions depend on the critical electric-field strength and
the latter in turn depends on the properties of the liquid (density, surface tension, kinematic viscosity, and
dielectric permeability). '

We will determine the conditions under which vibratory motions of a liquid in a heterogeneous, quasi-
varying external electric field are unstable and agitation is very vigorous. The relative motion of the phases
in a local-gradient electric field will not be considered, so that we will deal only with the motion of the lig-
uid as a whole, i.e., will consider the liquid or liquid system to be "quasihomogeneous."

Liquid motion can develop when the molecules move in the electric field in the direction of the greatest
field gradient, The initial perturbation develops at the instant when the external constant or quasivarying
electric field is applied.

The equation of motion for a "quasihomogeneous™ incompressible viscous liquid is:

—g:— +(Wv=— —:)— grad p + vAv —g. @

At small motion velocities, 9v/8t > ¥V)v. Takingthis into account, Eq, (1) for the horizontal component y
and vertical component z can be written in the form
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Fig, 1. Scheme of volume
mixing of liquid: 1, 2) elec-
trodes; 3} liquid; arrows
show turbalent jets.
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The discontinuity equation for an incompressible liquid is divv =0, or
&—- -} 9 = 0,
dy 0z
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We seek a solution to equation system (2)-(4) in the form of a fading plane wave (constexpkz + const
expnz)exp(—iwt + iky) (Rek,Ren > 0, with the z axis directed down into the liquid). The expression for

the horizontal velocity component is
v, - (exp kz - B exp nzyexp (— (ot + iky). .

Using Eq. (4), we write an expression for vy
‘ E oo\ :
Yy (a,nexp;kz +.— Bexp nz}l exp (— iwf -+ iky).
n

Substituting Eq. (5) into equation of motion {2), we obtain
[imaekz v (nzj ST _”‘L)ﬁ exp nz] exp (— it + tkg) = = 2.
T A S X

If the relationship between n and k has the form

SV —

S p A ]//1__‘1@ L )

the preceeding equation can be rewritten in the form

i exp kz exp (— iof -+ iky) == L g;’_ .
p

Substituting Eq. (6) into Eq. (2) and taking into account Eq. (8), we find

oo exphzexp(—iof + iky) g = L9 .
g 0z
Joint solution of Egs. (9) and (10) yields
Lo grta —(;i exp kz exp (— it -+ iky).
e

(5)

®)

(7)

8)
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(10)

11)

In order to determine the constants « and 8, it is necessary to use boundary conditions: the normal

and tangential pressures at the free boundary of the vibrating surface % {y} equal 0.

An external quasivarying electric field exerts pressure on the surface of the vibrating liguid, The

electric-field potential are ;
@ = @y -+ ¢y = — Ez -+ const exp kzexp (— iwf + iky)

over the vibrating surface (z > 0) and

’

¢ = ;L(cpﬁ -+ @) :=~—~—Elz+constexp(—~ kz) exp (— iot -} iky)
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beneath the vibrating surface (z > 0) and are sought in a form such that the perturbed term satisfies the
Laplacian A¢; = 0, A¢] = 0 and disappears on moving away from the surface:
01 ferme —> 0, (P; lz».—f—a; — 0.

Assuming that the displacement of the points on the vibrating surface is ®(y) = constexp(—iwt + iky), we
write

@ =—Epz+ Epx(y) exp (k2),
(12)
¢ = _ L Z— —Eix(y)exp(——kz).
& €

Using the boundary conditions for the electric-field potential (continuity of the normal component of
the electric-field induction), the expression for the pressure has the form

. ’ ’ 2 2
Ap = [(92 GL) ZE(I_L)(I_M)
8n on on o 8m \ e
with an accuaracy to terms of first order., We are interested only in the varying component of the electric-
field pressure:

, E} I
A =2 xk(l————). (13)
4n : €

At the free-surface boundary z = (y) of the vibrating liquid, the normal pressure component is:

X S Ay —p=0, (14)

2
ov 0z R

and the tangential pressure component is

pv( gv'y +_Zzzg_‘):0_ (15)
z y

The radius of curvature of the surface is R = Taking into account Eqgs. (5), (6),

(11), and (13), Egs, (14) and (15) yield

E; 1 o
[g—— 0 k(l——”x-—i i ——[2ikv(aexpkz—1—ﬁexpnz)—l— : aexpkz] exp(—iof + iky) =0, 16)

dnp & o 0y
2nka exp kz = (K - n?) B exp nz. a7
In first approximation, we can assume
0%
— vy, 18
5 (18)

Differentiating Eq. (16) with respect to time and taking into account Egs. (6) and (18), we find
2
1 k2 2 k 2 3
[g———" B (1 ——) + 2 —inkm"g“}aexf’kz+ [‘(g— B (L) 4 %) ok | pexpnz — 0,
4mp e p k n\ dmp € Y (19)

On the basis of the compatibility condition for the solutions to Eqs. (17) and (19), taking into account
Eq. (7), we write the dispersion equation for determination of the natural vibration frequency for the liquid:

ARy
71p & P +(2_ L(O)_4l/1_ o _, (20)

viRE vk? vk?

At Im w > 0, the system vibrations are unstable, because of the unlimited increase in vibration am~
plitude with time.

Let us consider the behavior of the system at low viscosities, where ILOI > v%3, In this case, we
find from Eq, (20) that

o=+ VLFE— 49— 2k, (21)
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where

E: 2
Lo=g——°k(1—l)+ iy 22)
dmp & P
At low electric-field strengths (Lj > 0) the surface vibrates at a frequency
— vkt
=+ |V LIk ——F=—|—2vR.
o (VIR-—r ) a
At higher electric-field strengths (L, < 0),
ot P (4nck + Amgp (23)
g— 1 k

motion is unstable, since the vibration amplitude increases with time by the rule

exp [Re (— iof)] = exp [(VLT,I% + ]2/";% ) t] .
(i}

For large viscosities, where |Lol < Vzks,

0= iil/ivzk“——g—Lok——iivkz.
3 3

9
At small electric-field strengths (L, > 0) the vibrations have an aperiodic charactor, with the frequencies
0 = — iivk?, Wy = — L ;
3 2vk

we are interested in w,, which is the smallest quantity. At high electric-field strengths (Iy < 0), the vibra-
tions have an aperiodic character, with slowly increasing amplitude

o _ 1Ll
2vk
and slowly decreasing amplitude
4 .
Wy == — '3— 'szl.

For large viscosities, attenuation at the frequency w, is dominant since lwi/wzl « 1,

3

Let us analyze the behavior of the system at |L0| ~ %3, After transformation, Eq. (20) yields

A+242— 42+ A+ 4=0, (24)
where
L _ A
V2k3
2=2— LOIN o = vkt (z —2). (25)
vk

It can be seen from Eq. (25) that the vibrations are unstable at Re z > 2, because of the unlimited in-
crease in amplitude with time, At Re zg, = 2 (corresponding to Ag,y), the vibrations are nonfading., In
order to determine Ay, we must solve Eq. (24), Using the Euler method [2], solution of Eq. (24) reduces
to solution to two second-order equations and one cubic resolvent equation,

# + 44y — 16y — 16 — 0. (26)

The roots of Eq. (24) are

l

o] -

Vo= Vi +Vall,

212
(27)

23, = 1? [— V!/_o + (Vy— — 'V/y—z).]"

where y,, vy, and y, are the roots of Eq. (26).
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TABLE 1. Cri’gical Parameters for Different Substances

Substance | & |em®/sec erg/cmﬂ g/ecm® | kv/cm | kv/cm | AeCM | 3 cm
Benzene | 2,28 { 0,00735 0,88 26,5 26,5 1,16 1,16
Glycerol | 43 | 6,8 63,4 1,26 25,6 42,5 5,1 5,25
Water 80 | 0,01 72 1,0 24,8 24,8 1,7 1,7
Ethanol 33 10,015 24,1 0,79 17,6 17,6 1,1 1,1
Toluol 2,39 | 0,0067 24,8 0,87 24,0 24,0 1,14 1,14
Mercury | - | 0,0012 472 13,65 75,0 75,0 1,18 1,18

Using the Cardano method to solve Eq. (26) for different numerical values of A, we find that Re zgyp=2
at Ay, = —5.75. Taking this into account, we find from Eq. (22) that the system vibrations are unstable at

& 1(23npv%z+ kpg +4mk) ©8)
8 —

It is of interest to determine the least (critical) external electric-field strength at which the super-
ficial vibrations become unstable, From the minimum condition for Eq. (28), we find

B L 9 B2 _Pg_q 29)
11.5pv? o

A solution to cubic Equation (29) can be found by the Cardano method. Since analytic solutions found by the
Cardano method are cumbersome, we will first find the minimum (critical) wave number ky at a small vis-
cosity (¥ ~ 0). In this case, Eq. (29) yields

ky = l/f%—e— .

The critical electric-field strength, taking into account the foregoing, is given by the relationship

Eo > 8” ¥ 0go. 30)
As an example of interest for practical application, we will consider a system with the parameters

e~ 3, p~1glem®, and 0 ~ 16 erg/em?, Using the above relationship, we find that the system is unstable

at E; > 20 kV/cm, ky = 7.8 em™, and Ay = 0.8 cm. The presence of viscosity obviously leads to an increase

in the critical field strength E;. At small viscosities, Eq. (29) can be used to find the approximate critical

wave number, In this case, Eq. (29), taking into account those quantities of first order of smallness, yields

kvz(l/é’p +575g‘”). 31)
N\

The critical electric field strength, taking into account Eq. (31), is given by the relationship
. . . 24,2
EV>——8—1<83'¢';’ pgo + QSHM) . (32)
e — o

A system with the parameters ¢~ 3, P ~ 1 g/em®, o ~ 16 erg/em®, and v ~ 3.3 stk is unstable when
Ep> 22 kV/em.

A similar method was used to calculate the critical electric-field strength for different substances.
The calculation results are given in Table 1,

The advantages of this method over mechanical agitation include more uniform agitation over the mix-
ture volume, since there are no stagnant zones, and lower energy consumption, since the electric-~field
energy is directly converted to the mechanical energy of agitation.

In conclusion, it should be noted that our solution to the Navier- Stokes equation for surface waves
pertains to a purely external flow regime and the sufficient conditions for flow turbulization in the liquid
volume naturally cannot follow directly from this solution, However, it has been shown experimentally [1]
that turbulent agitation of a liquid occurs in a strong external electric field; taking this into account, the
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instability conditions for surface waves can be used for analytic derivation of the necessary conditions for
surface waves, with the aid of viscosity forces, to produce turbulent agitation within a liquid, -

NOTATION
v is the velocity;
p is the density;
v is the kinematic viscosity;
g is the gravitational acceleration;
p is the hydrostatic pressure;
a, B are the constants;
Ey - is the strength of external quasi~variable uniform electric field;
€ is the dielectric permeability;
T is the surface tension coefficient for liquid;
R is the radius of curvature of liquid surface.
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